Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
ISTeP - UMR 7193
Institut des Sciences de la Terre de Paris

Séminaire ISTeP - Claudio Faccenna

(Univ. Rome 3)

Mountain building and mantle dynamics

Mountain building at convergent margins requires tectonic forces that can overcome frictional resistance along large-scale thrust faults and support the gravitational potential energy stored within the thickened crust of the orogen. A general, dynamic model for this process is still lacking. Here we propose that mountain belts can be classified between two end-members. First, those of “slab pull” type, where subduction is mainly confined to the upper mantle, and rollback trench motion lead to moderately thick crustal stacks, such as in the Mediterranean. Second, those of “slab suction” type, where whole-mantle convection cells (“conveyor belts”) lead to the more extreme expressions of orogeny, such as the largely thickened crust and high plateaus of present-day Tibet and the Altiplano. For the slab suction type, deep mantle convection produces the unique conditions to drag plates toward each other, irrespective of their nature and other boundary conditions. We support this hypothesis by analyzing the orogenic, volcanic, and convective history associated with the Tertiary formation of the Andes after ~40Ma and Himalayas after collision at ~55 Ma. Based on mantle circulation modeling and tectonic reconstructions, we surmise that the forces necessary to sustain slab-suction mountain building in those orogens derive, after transient slab ponding, from the mantle drag induced upon slab penetration into the lower mantle, and from an associated surge of mantle upwelling beneath Africa. This process started at ~65–55 Ma for Tibet-Himalaya, when the Tethyan slab penetrated into the lower mantle, and ~10 Myr later in the Andes, when the Nazca slab did. This surge of mantle convection drags plates against each other, generating the necessary compressional forces to create and sustain these two orogenic belts. If our model is correct, the available geological records of orogeny can be used to decipher time-dependent mantle convection, with implications for the supercontinental cycle.

11/07/2014 à 12h30, Salle de conférences de l'UFR (Tour 46-56, 2ème étage)

21/07/16

Traductions :

    Egalement dans la rubrique

    A voir

     

     

    Chiffres clés

    L'ISTeP comprend 155 membres dont :

    • 16 professeurs (dont 2 associés)
    • 28 maîtres de conférences
    • 2 directeurs de recherche
    • 4 chargés de recherche
    • 13 ATER et post-docs
    • 50 doctorants
    • 24 ITA-IATOS
    • 18 collaborateurs bénévoles (dont 9 émérites)